FAA Bi-Annual Rotorcraft Structures Research Review Meeting

Development of Improved Fatigue Crack Growth Test Methods and Analytic Models Applicable to Aircraft Propellers

Royce Forman (NASA JSC)

NASA Ames Research Center June 6 – 8, 2006

Overview

Principal tasks:

Develop and evaluate fatigue crack threshold testing methods

 Evaluate validity and accuracy of commonly used analytic models for DTA of rotorcraft.

Specimen Configurations

Testing Progress for last 6 months at JSC:

• Threshold testing completed on Ti-6-4 MA specimens to compare threshold values between C(T), ESE(T), M(T) & SM(T) designs.

SM(T) Specimen Benefits

- Crack has less tendency to turn compared to the C(T) specimen
- Specimen has high stiffness - allowing high cyclic frequency
- Requires much less material than for an M(T) specimen.

Comparison of W=3" C(T) specimen with W=3.4" SM(T) specimen.

Comparison of R=0.1 Ti-6-4 Data for Different Specimen Types

Comparison of R=0.7 Ti-6-4 Data for Different Specimen Types

2025-T6 Propeller Blade

Testing Progress for Last 6 Months (Continued):

2025-T6 Propeller – Testing completed on 8 ESE(T) specimens machined from shank. Testing of SM(T) specimens to soon begin.

Specimen Types:

2025-T6 Aluminum

R=0.1 & 0.7 Test Results for 2025-T6 Propeller Forging, ESE(T) Specimens

2025-T6 Aluminum

2014-T6 Propeller Hub

Testing Progress for last 6 months (Continued):

2014-T6 Hub Forging (from Alcoa) – Completed testing 6 of 8
 ESE(T) specimens. Testing of 6 SM(T) specimens to follow.

Additional Propeller Material Testing

Testing Progress for last 6 months (Continued):

- D6AC steel
 - (a) 14 machined specimens were heat treated to required RC 35 (180 UTS) condition; Surface regrinding is next step.

Note: 10 specimens were tested in the as forged RC19 condition.

- (b) Blanks for 38 surface crack specimens were heat treated to RC 35. Final machining of these to the dog-bone shape will shortly begin.
- <u>4340 steel</u> 34 previously machined specimens to be soon heat treated.
- <u>7075-T7351</u> 40 dog-bone shaped specimen were machined and sent to Hamilton-Sundstrand for shot-peening and laser surface notching.

NASA Laboratory Upgrades

Recent NASA Funded Equipment Purchases To Improve Testing Capabilities:

- Ordered 2 additional 10 Kip MTS fatigue machines with FTA automated testing systems (to give a total of 8 test systems) - \$100K
- Purchased 2 direct potential drop crack measurement systems needed for testing surface crack specimens - \$22K
- Refurbished 4 measuring microscopes to give digital readout \$12K

Overview

Principal tasks:

 Develop and evaluate fatigue crack threshold testing methods

 Evaluate validity and accuracy of commonly used analytic models for DTA of rotorcraft.

NASGRO Eqn fit: Ti-6-4 MA; 0.25" Plt; L-T; C(T) Specimen Data;

Improved Modeling of R-Ratio Behavior for the Walker Equation

Newman Closure and Walker Equations

Eqn:

$$\frac{da}{dN} = C \left[\left(\frac{1 - f}{1 - R} \right) \Delta K \right]^n$$

where
$$f = \frac{K_{op}}{K_{\text{max}}} = \begin{cases} \max(R, A_0 + A_1R + A_2R^2 + A_3R^3) & R \ge 0 \\ A_0 + A_1R & -2 \le R < 0 \end{cases}$$

Walker Eqn:
$$\frac{da}{dN} = C \left| \frac{\Delta K}{(1-R)^{l-m}} \right|^{n}$$

Discrepancy between Walker & Closure Eqn's In Modeling R-Ratio Behavior

Example: Fits to NASMAT data (R = 0.1 to 0.7 data sets) for 7050-T7451 Al

"Revised Walker Equation" & example fit to closure equation

Example Fit: NASMAT data for 7050-T7451 AL

$$\frac{da}{dN} = C \left\{ \frac{\Delta K}{\left(l - C_R R^b \right)^{l-m}} \right\}^n$$

Rev. Walker Equation

Summary

- The recently received FAA funding is sufficient to complete all planned tasks on this project.
- This FAA project has continued to be very applicable and beneficial in improving crack growth analysis technology used in NASA space programs

Fracture Mechanics R&D at JSC

Fracture Mechanics Development Teams:

Experimental Projects Team

Royce Forman (NASA)

Scott Forth* (NASA)

Analysis/Software Projects Team

Joachim Beek *(NASA)

NASGRO Contractor Support Team

- V. Shivakumar, R. Christian, L Williams, F. Yeh, Y. Guo*

* New members

Planned Future Projects

Experimental and Computational Projects:

- Behavior of fatigue cracks growing from corrosion pits
- Effects of load interaction on fatigue crack growth
- Effects of environment and roughness on thresholds
- Development of da/dN data for numerous materials
- Improved multi-parameter crack instability model
- Fatigue crack growth through residual stress gradients
- Damage tolerance analysis of composite structures
- 3-D crack solutions for mechanical fittings, shafts, gears, etc.
- Hybrid 2-D BEM/FEM software module for layered joints